5th World Conference on Pediatric Critical Care Geneva, Switzerland

The Bundles of Mechanical Ventilation

Dr. Julio Farias Dr. Ezequiel Monteverde Servicio de Cuidados Intensivos Pediátricos Hospital de Niños "Dr R Gutiérrez" Buenos Aires, Argentina

The problem:

No clear definition Heterogeneity in information Low quality information Not much data about pediatrics

The Bundle Concept

A "bundle" is a group of interventions related to a disease process that, when executed together, result in better outcomes than when implemented individually.

The Bundle Concept

A "bundle" is a group of interventions related to a disease process that, when executed together, result in better outcomes than when implemented individually.

The Bundle Concept

A group of evidence based treatments related to a disease process, instituted together over a specific time frame and termed 'a care bundle', is anticipated to result in better outcomes than when they are executed individually.

Gao F et al. The impact of compliance with 6-hour and 24-hour sepsis bundles on hospital mortality in patients with severe sepsis: a prospective observational study. Crit Care 2005;9(6):R764-70

The problem with pediatric bundles

Much of current clinical practice in the pediatric ICU is based on anecdotal experience combined with extrapolation from adult data.

What are "bundles"? The MV Bundle Contents

PreventIVentilatorIInduced LungIInjury (VIL)I

Lung protective ventilation strategies

Low TV/low plateau pressure PEEP Daily "vacation" from sedation

Prevent Ventilator Associated Pneumonia (VAP) Head over the bed Gastric ulcer prophylaxis Deep venous thrombosis prophylaxis Daily "vacation" from sedation

Weaning

Spontaneous breathing test

MV Bundle Contents

Prevent Ventilator Induced Lung Injury (VILI) Prevent Ventilator Associated Pneumonia (VAP)

Liberation from mechanical ventilation

The Fundamentals of Lung Protective Ventilation

Low tidal volume ventilation

Prevention of volutra uma

- Injured lung is not homogeneous
- A normal TV would go primarily to healthier regions
- Regional overinflation

Prevention of atelectrauma

- Affects recruitable alveoli
- Recruitment-derecruitment
- Disruption of the surfactant monolayer
- Requirement of higher pressures

The Fundamentals of Lung Protective Ventilation

	Tidal volume Mortality %			p-value	
	Low TV	Control	Low TV	Control	
Amato et al N Engl J Med 1998 347- 54	6.1± 0.2	11.9± 0.5	38	71	< 0.001
Stewart et al N Engl J Med 1998 355 – 61	7.2 ± 0.8	10.6± 0.2	50	47	0.38
Brochard et al AJRCCM 1998 1831 – 38	7.2 ± 0.2	10.4± 0.2	47	38	0.60
ARDS Network N Engl J Med 2000 1301-8	6.3 ± 0.1	11.7± 0.1	31	40	0.007
Villar et al Crit Care Med 2006 1311-8	7.1 ± 0.1	10 ± 0.2	32	53	0.04

The Fundamentals of Lung Protective Ventilation

	Tidal volume Mortality %		lity %	p-value	
	Low TV	Control	Low TV	Control	
Stewart et al N Engl J Med 1998 355 – 61	7.2 ± 0.8	10.6± 0.2	50	47	0.38
Brochard et al AJRCCM 1998 1831 – 38	7.2 ± 0.2	10.4± 0.2	47	38	0.60
Amato et al N Engl J Med 1998 347- 54	6.1± 0.2	11.9± 0.5	38	71	< 0. 001
ARDS Network N Engl J Med 2000 1301-8	6.3 ± 0.1	11.7± 0.1	31	40	0.007
Villar et al Crit Care Med 2006 1311-8	7.1 ± 0.1	10 ± 0.2	32	53	0.04

The Fundamentals of Lung Protective Ventilation

	Tidal v	volume	Morta	Mortality %			
	Low TV	Control	Low TV	Control			
Stewart et al N Engl J Med 1998 355 - 61	7.2 ± 0.8	10.6± 0.2	50	47	0.38		
Brochard et al AJ RCCM 1998 1831 - 38	7.2 ± 0.2	10.4± 0.2	47	38	0.60		

Prevention of VIL: pressure or volume

AMERICAN JOURNAL OF Respiratory and Critical Care Medicine

Eichacker PQ. Am J Respir Crit Care Med. 2002;166:1510-4

Pressure or volume?

 Maximum transalveolar pressure (and/or tidal pressure excursion) is the primary generator of damaging tissue strains—not tidal volume per se.

Transalveolar pressure is a function of tidal volume in relation to specific compliance.

Although subject to chest wall compliance, the transalveolar pressure is strongly correlated to endinspiratory plateau pressure

Pressure or volume?

		Age Range	
	0-2 yr	0-5 yr	0-18 yr
Crs, st	2.60 ± 0.6	2.02 ± 0.4	1.76 ± 0.2
Crs, dyn	3.06 ± 0.5	2.31 ± 0.3	2.06 ± 0.4

51 patients from 3 wk to 15 yr studied while under anesthesia –using nitrous oxide and alcuronium– for urological surgery or repair of inguinal hernias.

Lanteri CJ. J Appl Physiol 1993;74:369-378

Application of PEEP

	Da	ay 1	Day 4	Day 6			
Patients with PEEP n	OverallARDS54915		Overall 255	Overall 153	ARDS 12		
(%)	83%	(95%)	(75%)	(80%)	(91%)		
Applied PEEP	4 (2,5)	8 (5,10)	4 (3,5)	4 (3,5)	5 (4,9)		

Farias JA and IGMVC; Intensive Care Med 2004 30:918–925

Application of PEEP

How much PEEP is correct?

How much **PEEP?**

Amato & VS. ARDS VS. Network

How much PEEP?

Allowable combinations of FiO_2 and PEEP (cm of water)‡

0.3 and 5 0.4 and 5 0.4 and 8 0.5 and 8 0.5 and 10 0.6 and 10 0.7 and 10 0.7 and 12 0.7 and 14 0.8 and 14 0.9 and 14 0.9 and 16 0.9 and 18 1.0 and 18 1.0 and 20 1.0 and 22 1.0 and 24

Daily discontinuation of sedatives

Protocol

- Daily interruption of the infusion of sedatives and analgesics until the patients were awake and could follow instructions or until they became uncomfortable or agitated and were deemed to require the resumption of sedation.
- Each day, the team assessed each patient's mental status with respect to wakefulness.
- The primary end points of the study were the duration of mechanical ventilation, the length of stay in the intensive care unit, and the length of stay in the hospital

The NEW ENGLAND JOURNAL of MEDICINE Kress JP et al. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation NEJM 2000;342:1471-7

Daily discontinuation of sedatives

Results

- The median duration of MV was 4.9 days in the intervention group, as compared with 7.3 days in the control group (p=0.004)
- The median length of stay in the intensive care unit was 6.4 days as compared with 9.9 days, respectively (p=0.02).

 There were no differences in the rates of complications (e.g., removal of the endotracheal tube by the patient) between both groups m(p=0.88).

The NEW ENGLAND JOURNAL of MEDICINE Kress JP et al. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation NEJM 2000;342:1471-7

MV Bundle Contents

Prevent Ventilator Induced Lung Injury (VILI) Prevent Ventilator Associated Pneumonia (VAP)

Weaning

Ventilator Associated Pneumonia

The key components of the Ventilator Bundle are:

- Eevation of the Head of the Bed
- Daily "Sedation Vacations" and Assessment of Readiness to Extubate
- Peptic Ulcer Disease Prophylaxis
- Deep Venous Thrombosis Prophylaxis

Ventilator bundle

	Semirecumbent group	Supine group	p value	eumonia
Rate of clinically suspected NP	3/39 [8%]	16/47 [34%]	0.003	
Rate of microbiologically confirmed NP	2/39 [5%]	11/47 [23%]	0.018	ndle are:
Supine body position and factors for nosocomial pre- highest for patients receive position (14/28, 50%).	enteral nutrition we eumonia and the fre ing enteral nutrition	ere independe equency was n in the supine	nt risk e body	sessment of
Drakulovic MB. Lancet 199	9;354:1851 -8			
				!-

Deep Venous Thrombosis Prophylaxis

Ventileter bundle								
		Intervention group	Control group	p value				
	Duration of MV	4.9 (2.5-8.6)	7.3 (3.4-16.1)	0.004				
Rate of clinically	Length of stay (days)							
suspected NP	ICU	6.4 [3.9-12.0]	9.9 [4.7-17.9]	0.02				
Rate of microbiologically	Hospital	13.3 [7.3-20.0]	16.9 [8.5-26.6]	0.19				
confirmed NP	Kress JP et al. N Eng J Med 2000;342:1471-7							
Supine body position and enteral nutrition were independent risk factors for nosocomial pneumonia and the frequency was highest for patients receiving enteral nutrition in the supine body position (14/28, 50%).								
Drakulovic MB. Lancet 1999	;354:1851 -8							
 Deep Veno 	us Thrombosis Pro	ophylaxis						

Ventilator bund			Intervention group	Control group	p value
		Duration of MV	4.9 (2.5-8.6)	7.3 (3.4-16.1)	0.004
Rate of clinically		Length of stay (days)			
suspected NP		ICU	6.4 [3.9-12.0]	9.9 [4.7-17.9]	0.02
Rate of microbiologica	ally	Hospital	13.3 [7.3-20.0]	16.9 [8.5-26.6]	0.19
confirmed NP		Kroce ID at al N Eng IMa	4 2000.212.1171	-7	
Supine body position a factors for nosocomia highest for patients re position (14/28, 50%). Drakulovic MB. Lance	ar suc suc who ce Bre anta hem	rero E, Bank S, Margolis I, e ralfate in the prevention of g are critically ill. <i>Am J Med</i> salier RS, Grendell JH, Cello acid for the prevention of ac norrhage in critically ill patie	al: Comparisor gastrointestinal I 1985;79:62–64 JP, et al: Sucra ute stress-relate ents. <i>Am J Med</i> 1	bleeding in patie lfate versus titra d gastrointestin 987; 83:110–116	nts Ited al
Deep Ve Cook D, Guyatt G, Marshall J, et al: A comparison of sucralfate and ranitidine for the prevention of upper gastrointestinal bleeding in patients requiring mechanical ventilation. Canadian Critical Care Trials Group. N Engl J Med 1998; 338:791–797					
The Juint Commission Journal on Quality and Patient Safety	Resar proces J Qual	R et al. Using a bundle ap sses and reduce ventilato <i>Patient Saf</i> . 2005;3 <u>1:243-</u>	proach to imp r associated p 248.	rove ventilator neumonia. <i>Jt</i> C	care Comm

	entila to	or bundle				Inte	erventio	n	Contr	ol group	p value
			S	Duration of MV		4.9	(2.5 - 8.6	6)	7.3 (3	3.4-16.1)	0.004
	Rate of clir suspected	nically NP		Length of stay	(days)	6.4	[3.9-12.	0]	9.9 [4	4.7-17.9]	0.02
	Rate of microbiologically			Hospital		13.3	[7.3-20	.0]	16.9 [8.5-26.6]	0.19
	confirmed	NP .		Kroce ID at al	N Eng I Mog		0.212.1	<u>/71</u> _	7		
		Table 17—Thron	nbop	orophylaxis Trials in Cr	itical Care Patie	nts*				i in natie	nts
				Inter	vention		DV	Τł		j ili patio	1110
	Study/Year	Method of Diagn	osis	Control	Experimental		Control	Exper	imental		
Cade	685/1982	FUT for $4–10$ d		Placebo	Heparin, 5,000 U SC bid	NR	/NR (29)	NR/N	NR (13)	rsus titra	ted
Kapo	or et al ⁷⁵⁶ /1999	DUS on admission and	every	3 d Placebo	Heparin, 5,000 U SC bid	122	2/390 (31)	44/4	401 (11)	ointestin	al
Frais	se et al ⁷⁵⁴ /2000	Venography before day	21	Placebo	Nadroparin, approximately 65 U/kg SC once daily	24	1/85 (28)	13/8	34(15)	:110–116	
Goldi	haber et al ⁷⁵⁷ /2000	DUS on days 3, 7, 10, a	and 14	4 Heparin, 5,000 U SC bid	Enoxaparin, 30 mg SC bid	NR	/NR (13)	NR/N	NR (16)	cralfate	and
*Ran †Valu	domized clinical trial les given as No. of pa	s in which routine screeni atients with DVT/total No	ng wi . of pa	th an objective diagnostic te atients (%).	st for DVT was used	in critic	al care unit j	patients.		leeding i	n e

Trials Group. *N Engl J Med* 1998; 338:791–797

Ventilator Associated Pneumonia

- 1 Elevation of the head of the bed (HOB) to 30° to 45° unless medically contraindicated,
- **2** Continuous removal of subglottic secretions,
- Change of ventilator circuit no more often than every 48 hours, and
- 4 Washing of hands before and after contact with each patient.

Arlene F et al. Am J Crit Care. 2007;16(1):20-7

DF

RF

Reference	Year	Design	Significant outcomes	Suggested practice	
HOB elevation					
Drakulovic et al³	1999	Randomized controlled trial	HOB elevation and VAP	HOB elevation at 30°-45°	monia
Kollef⁴	1993	Inception cohort design	Mortality rate and VAP		
Kollef et al ^s	1997	Comparison studies, surveillance of patients, and data collection	Transport of patients and VAP rate		
Grap et al⁵	2005	Longitudinal, descriptive design	Height of back rest and VAP, comfort and skin integrity of patient	HOB elevation	to 300
Metheny et al ⁷	2006	Prospective, descriptive design	HOB and outcomes; risk factors for VAP	HOB elevation >30°	
Hanneman and Gusick®	2005	Cross-sectional design, observational data	HOB and outcomes, supine and 30°, semiprone with head down 15°-20°	HOB elevation	,
Torres et al ^e	1992	Comparison	Comparison of semirecumbent and supine positions	HOB elevation at least 45° prophylactic measure for gastric aspiration	tions
Babcock et al'º Salahuddin et al'' Zack et al'²	2004 2004 2002	Before and after education	Staff education decreased VAP incidence	Staff education on VAP	
Warren et al ¹³	2003	Association and multiple regression	VAP and length of stay in intensive care unit, hospital stay, mortality rate, hospital cost		en than
Cook et al ¹⁴	2002	Semistructured interviews and focus groups	Barriers leading to underuse of HOB elevation		

4 Washing of hands before and after contact with each patient.

Arlene F et al. Am J Crit Care. 2007;16(1):20-7

	Reference		Year	Design		Significant outcomes		Suggested pra	actice	
_	HOB elevation									
	Drakulovic et al ³		1999	Randomized controlled tria		HOB elevation and VAP		HOB elevation at	30°-45°	monia
	Kollef⁴		1993	Inception cohor	t design	Mortality rate and VAP				
	Kollef et al⁵		1997	Comparison stu surveillance of p and data colled	dies, patients, ction	Transport of patients and VAP ra	ite			
	Grap et al⁵		2005	Longitudinal, de design	scriptive	Height of back rest and VAP, cor and skin integrity of patient	nfort	HOB elevation		to 300
	Metheny et al ⁷		2006	Prospective, des design	criptive	HOB and outcomes; risk factors f	or VAP	HOB elevation >3	0°	
	Hanneman and G	Gusick	2005	Cross-sectional observational	design, data	HOB and outcomes, supine and 3 semiprone with head down 15°	30°, -20°	HOB elevation		7
	Torres et al [®]		1992	Comparison		Comparison of semirecumbent a supine positions	nd	HOB elevation at prophylactic mea gastric aspiration	least 45º asure for า	tions
Oral ca	'e								VAP	1011 3 ,
Bergma Pugin e	netal ²¹ z	2001 1991	Randor trial	nized controlled	Tracheo incide	obronchial colonization and VAP nce				
Bergma	n et al ²¹ 2	2001	Randor trial	nized controlled	Antibio	tics and colonization	Prophy	lactic antibiotics		en than
DeRiso	et al²³	1996	Randor trial	nized controlled	Chlorhe	xidine reduced respiratory infection	Oral ca	re		
Mentec	etal²⁴ 2	2001	Randor trial	nized controlled	Gastric increa	residual volume and vomiting sed incidence of VAP	Check o volum	gastric residual e		
Cutler a	nd Davis ²⁵	2005	Observa and at	ation before fter education	Implem impro	entation of oral care protocol ved oral care	Oral ca provis tools	re protocol and ion of appropriate	on	tact

with each patient.

Arlene F et al. Am J Crit Care. 2007;16(1):20-7

HOB elevation Drakulovic et al ³ Kollef ⁴	1999				
Drakulovic et al ³ Kolle f	1999				
Kollef⁴		Randomized controlled trial	HOB elevation and VAP	HOB elevation at 30°-45°	monia
	1993	Inception cohort design	Mortality rate and VAP		
Kollef et al⁵	1997	Comparison studies, surveillance of patients, and data collection	Transport of patients and VAP rat	te	
Grap et al⁵	2005	Longitudinal, descriptive design	Height of back rest and VAP, com and skin integrity of patient	nfort HOB elevation	to 300
Metheny et al'	2006	Prospective, descriptive design	HOB and outcomes; risk factors fo	or VAP HOB elevation >30°	
Hanneman and Gu	ısick [®] 2005	Cross-sectional design, observational data	HOB and outcomes, supine and 3 semiprone with head down 15°-	0°, HOB elevation 20°	,
Torres et al ⁹	1992	Comparison	Comparison of semirecumbent ar supine positions	nd HOB elevation at least 45° prophylactic measure for gastric aspiration	tions
Oral care					
Bergman et al ²¹ 20 Pugin et al ²² 19	001 Randor 991 trial	mized controlled Trachee incide	obronchial colonization and VAP nce		
Bergman et al ²¹ 20	001 Randor trial	nized controlled Antibio	tics and colonization	Prophylactic antibiotics	en than
DeRiso et al ²³ 19	996 Randor	Hand washing			
Mentec et al ²⁴ 20	trial 001 Randor trial	Girou et al ¹⁵ Lucet et al ¹⁶ Trick et al ¹⁷	2002 Randomized controlled Ba 2002 trial a 2003	cterial count for alcohol-based solution nd hand washing	on Use of alcohol-based solution for hand washing
Cutler and Davis ²⁵ 20	005 Observ	Zaragosa et al®	1999		
	and a	Trick et al"	2003 Randomized controlled Wo trial	earing rings and hand contaminatio	n Refraining from wearing rings during work
wi	th e	Doebbeling et al ¹⁹	1992 Crossover trial Us at	e of chlorhexidine, soap, and alcoho nd VAP incidence	ol Use of chlorhexidine, soap, and alcohol
		Pittet et al²º	1999 Observation study Ha	and washing and bacterial count	Hand washing before and after contact with patient

In Pediatrics...

Ventilator Associated Pneumonia

IMPLEMENTATION OF A PEDIATRIC SPECIFIC VAP BUN-DLE RESULTS IN NEAR ELIMINATION OF VENTILATOR-ASSOCIATED PNEUMONIA (VAP) IN A TERTIARY PEDIATRIC ICU

Richard J. Brilli MD* Dan Wells RRT Julie Shaw RN Cincinnati Childrens Hospital, Cincinnati, OH

- Change ventilator circuits only when soiled
- Drain circuit condensate every 2-4 hours
- Store oral suction devices in non-sealed plastic bags at bedside
- Mouth care every 4 hours
- Elevate head of bed
- Drain ventilator circuit before moving patient

In Pediatrics...

Ventilator Associated Pneumonia

	Pre-bundle	Post-bundle	р
Mean VAP rate	6.6/1000 vent days	0.5/1000 vent days	<0.05
VAP incidence	39/1076 (3.6%)	1/409 (2.4%)	

RESULTS: Mean baseline VAP rate was 6.6 infections per 1000 ventilator days. Post bundle implementation, mean VAP rate was 0.5/1000 vent days (p < 0.05) and days between VAP infections was 228. Pre-bundle there were 39 infections in 1076 ventilated patients (3.6%) compared to 1 infection in 409 patients (2.4%) post-bundle. Measured adherence with implementation of each bundle element was 100%. PICU mortality rates, LOS, and average duration of mechanical ventilation were not different pre and post VAP bundle.

MV Bundle Contents

Prevent Ventilator Induced Lung Injury (VILI) Prevent Ventilator Associated Pneumonia (VAP)

Liberation from mechanical ventilation

When to initiate?

Adequate oxygenation (eg, $Po_2 \ge 60 \text{ mm Hg on } FIO_2 \le 0.4$; $PEEP \le 5-10 \text{ cm H}_2O$; $Po_2/FIO_2 \ge 150-300$); Stable cardiovascular system (eg, $HR \le 140$; stable BP; no (or minimal) pressors) Afebrile (temperature $< 38^{\circ}C$) No significant respiratory acidosis Adequate hemoglobin (eg, Hgb $\ge 8-10 \text{ g/dL}$) Adequate mentation (eg, arousable, GCS ≥ 13 , no continuous sedative infusions) Stable metabolic status (eg, acceptable electrolytes) Resolution of disease acute phase; physician believes discontinuation possible; adequate cough

Can the patient sustain spontaneous breathing?

	n	SE	EF	TF
Farias JA; et al. Int Care Med 1998:1070-5	84	89 %	16 %	10 %
Farias JA; et al. Int Care Med 2002:752-7	418	77 %	14 %	23 %
Randolph; A et al. JAMA 2002: 2561-8	313	42 %	11%	58 %
Noizet O; et al. Crit Care Med 2005, 798-7	54 (57)	80 %	20 %	3 %
Chavez A; et al. PCCM 2006. 324-328	70	91 %	7.8 %	9 %

Spontaneous breathing trial in children

 Multicenter, prospective, RCT including 257 infants and children who received MV at least for 48h and were considered able to undergo a SBT by their primary physician

 Patients were randomly assigned to perform a SBT in one of two ways: PSV of 10 cmH₂O or Tpiece.

Farias JA et al. Intensive Care Med 2001; 27:1649-54

Spontaneous breathing trial in children

	Reconnected	Extubated	Reintubated within 48h
Pressure support (n=125)	26 (21%)	99 (79%)	15 (15%)
T-piece (n=132)	30 (23%)	102 (77%)	13 (13%)

	Pressure support (n=125)	T-piece (n=132)	р
Patients that remain extubated 48 h after SBT	67.2	67.4	0.97
Reintubation rate	15.1	12.7	0.62
Trial failure rate	20.8	22.7	0.81

Farias JA et al. Intensive Care Med 2001; 27:1649-54

Spontaneous breathing trial in children

As in adults, successful extubation can be achieved in most children after the first breathing trial, performed either with pressure support of 10 cmH_20 or a T-piece.

Farias JA et al. Intensive Care Med 2001; 27:1649-54

Finally

The Bundles of Mechanical Ventilation

Prevent Ventilator Induced Lung Injury (VIL)

Lung protective ventilation strategies

Low TV/low plateau pressure

PEEPdefine potential for recruitment

*v*la xis

Daily "vacation" from sedation Yet to be proven in pediatrics

Prevent Ventilator Associated Pneumonia (VAP)

Weaning

Head over the bed

Gastric ulcer prophylaxis

- Change ventilator circuits only when soiled
- + Drain circuit condensate every 2-4 hours
- Store oral suction devices in non-sealed plastic bags at bedside
- Houth care every 4 hours
- Elevate head of bed
- Drain ventilator circuit before moving patient

Spontaneous breathing test

