Eduardo da Cruz, MD

Director, Cardiac Intensive Care Unit The Children's Hospital of Denver Associate Professor of Pediatrics University of Colorado at Denver & Health Sciences Center

5th World Congress on Pediatric Critical Care CV Symposium 3 Geneva-CH, 2007

child's

 Arrhythmias in the the immediate postoperative course of pediatric cardiac surgery: widely recognized complication

Related mortality documented between 0 and 1.2%

(- Hoffman TM, et al. Ped Cardiol 2002; 23: 598-560 - Lan YT, et al. Curr Opin Cardiol 2003; 18: 73-78)

Incidence: 15-48%

- (- Delaney JW, et al. J Thorac Cardiovascu Surg 2006; 131: 1296-1300
- Valsangiacomo E, et al.Ann Thorac Surg 2002; 74: 792-796
- Pfammatter JP, et al. Ped Crit Care Med 2001; 2: 217-222
- Rekawek J, et al. J Thorac Cardiovasc Surg 2007; 133:900-904)

Definition of hemodynamically significant arrhythmias vs "benign" rhythm variations

WHEN TO CARE AN D HOW TO TREAT SIGN IFICAN T ARRHYTHMIAS?

Triggering factors:

- Postoperative cardiac dysfunction
- Scar and sutures
- Electrolyte disturbances
- Stress response
- Catecholamine stimulation
- Pain, anxiety
- Inflammatory process

Risk factors:

- Lower body weight
- Younger age
- Longer C.P.B.P. & aortic crossclamp times
- Use of deep hypothermia and circulatory arrest
- Type of intervention
- Residual lesions
- Higher Aristotle Basic Score

Management of Rhythm and Conduction Disorders Objectives

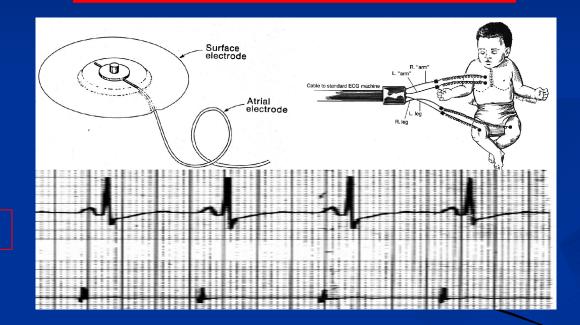
- Anticipation and identification of the type of arrhythmia/conductive disorder
- **Identification of the causes for the arrhythmia**
- **Identification of the predisposing and triggering factors**
- Rectification of all documented abnormalities taking into account the risk/benefit ratio:
 - Anti-arrhythmic drugs/watch for "pro-arrythmogenic" effect
 - Surgery (Maze)
 - Mapping/ablation
 - Pacemaker strategies

Sinus tachycardia?

SVT?

Atrial flutter?

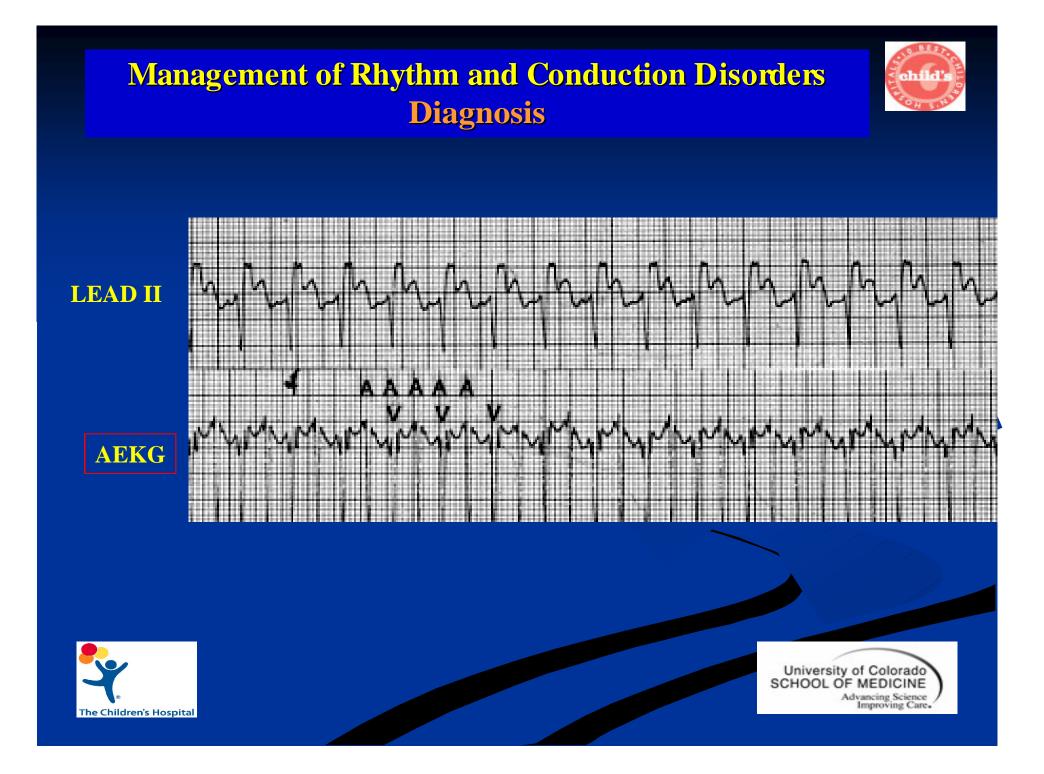
Ventricular tachycardia?

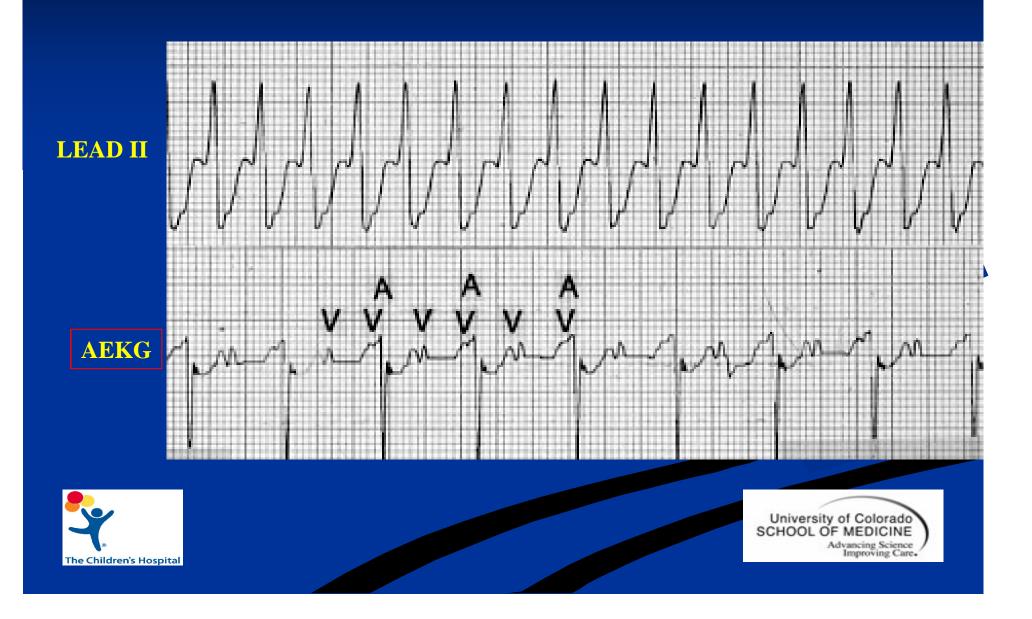


Junctional Ectopic Tachycardia?

ATRIAL/ EPICARDIAL EKG

ADENOSINE





Management of Rhythm and Conduction Disorders: Most common anomalies

Supraventricular Tachycardia

- Junctional re-entry Tachycardia
- Intra-atrial re-entry Tachycardia
- Junctional Ectopic Tachycardia/JET
- Ventricular Tachycardia
- Atrio-Ventricular Block

Supraventricular Tachycardia

95% of postoperative tachycardias

Narrow QRS complexes

2 pathophysiological types :

Re-entry tachycardia (with/without accessory pathways)

Ectopic (automatic)

Re-entry without accessory pathway

Re-entry with accessory pathway

Sinus re-entry

Atrial fibrillation

Atrial flutter

AV re-entry

Hisian re-entry

Orthodromic/ Wolff-Parkinson-White Antidromic

Permanent junctional re-entry

Mahaim

Atrial ectopic

Atrial chaotic

JET

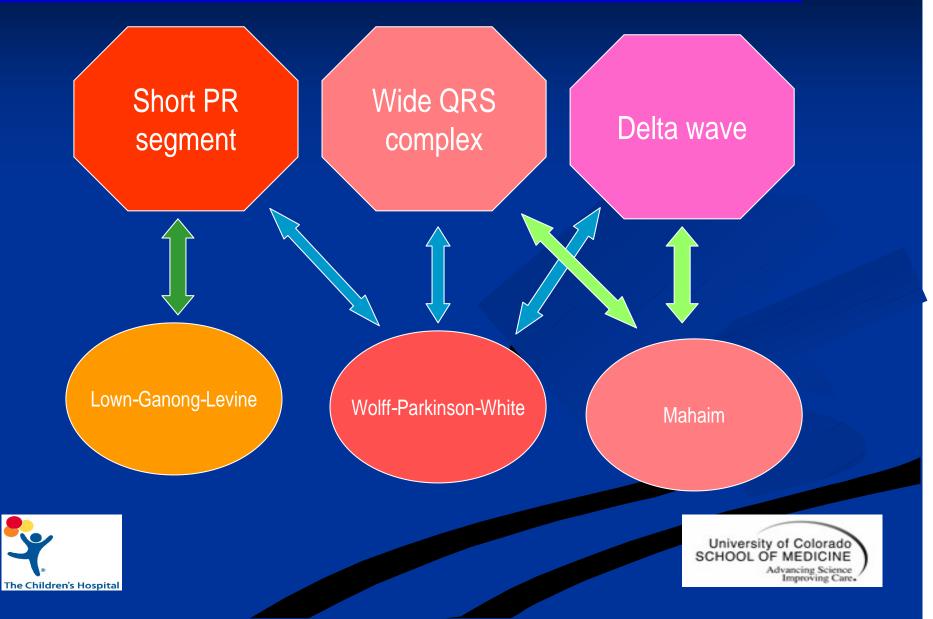
- **Re-entry Tachycardia:**
- More frequent
- Abrupt start and conversion and are paroxysmal
- Little variation of the heart rate
- Converted by adenosine
- **Converted by cardioversion and overdrive**

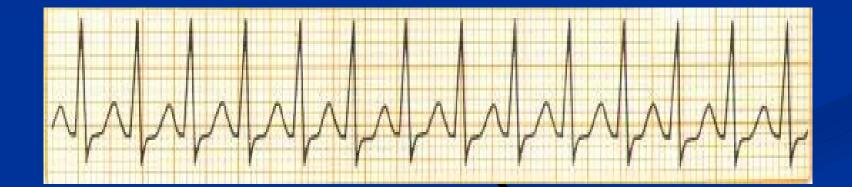
Re-entry Tachycardia with accessory pathways:

Pre-excitation syndromes:

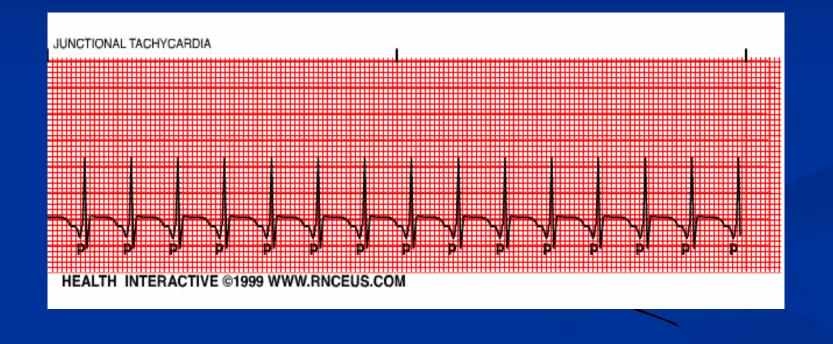
Short PR intervalWide QRSDelta wave

■ AV node re-entry:


Retrograde P' wave within the QRS complex (invisible)or in the terminal portion of the QRS complex



Management of Rhythm and Conduction Disorders SVT/pre-excitation syndromes



Re-entry Tachycardia without accessory pathways: atrial flutter and fibrillation:

- Abrupt start
- **Atrial flutter: usually rather stable rate**
- Atrial fibrillation: irregular rate
- **Difficult diagnosis if "1:1" or "2:1" conduction**
- Usually poorly tolerated in the immediate postoperative period
- May co-exist with a sinus node dysfunction (tachycardia-bradycardia syndrome)

Management of Rhythm and Conduction Disorders Atrial Flutter

HEALTH INTERACTIVE © 1999 - WWW.RNCEUS.COM

- Regular rhythm
- **F** waves ("saw-tooth")
- Variable conduction; 2:1
 (++)
- Vagal stimuli decrease the ventricular rate but do not convert to sinus rhythm

University of Colorado SCHOOL OF MEDICINE Advancing Science Improving Care.

Management of Rhythm and Conduction Disorders Atrial fibrillation

HEALTH INTERACTIVE © 1999 - WWW.RNCEUS.COM

Multiples focci Irregular rate, variable wave forms

Management of Rhythm and Conduction Disorders Atrial fibrillation

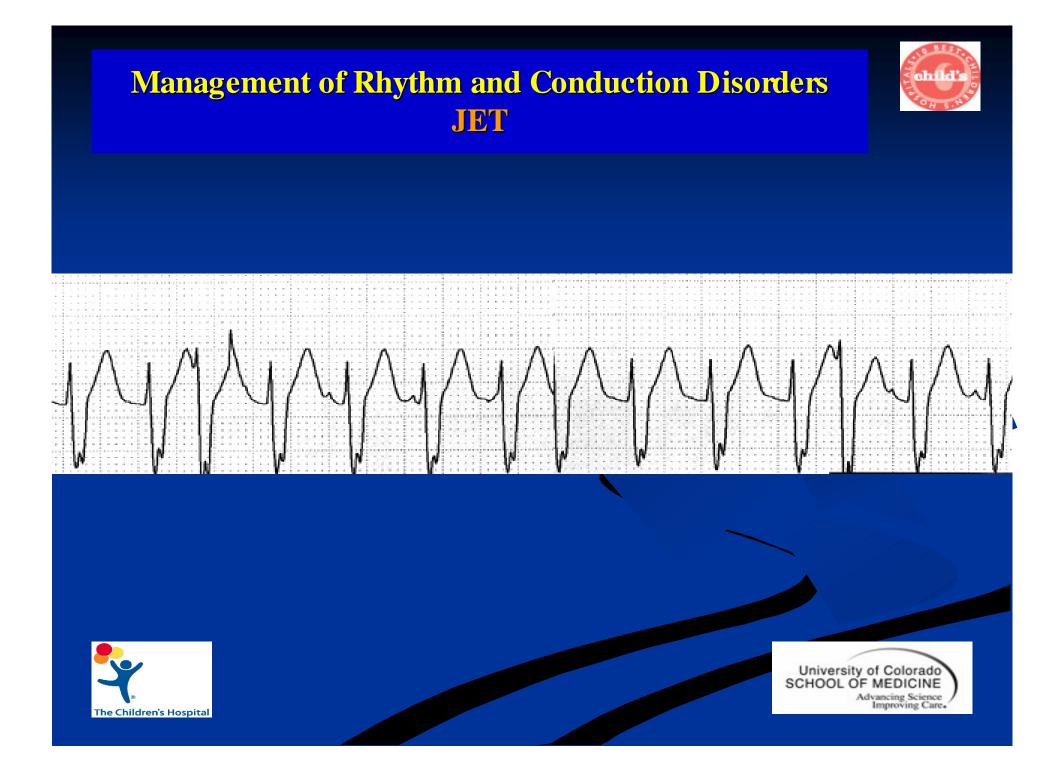
- Automatic supraventricular tachycardia:
- Less frequent
- Variable heart rate (autonomic status)
- Unresponsive to cardioversion and overdrive
- **Unresponsive to adenosine/resistant to many anti-arrhythmic drugs**

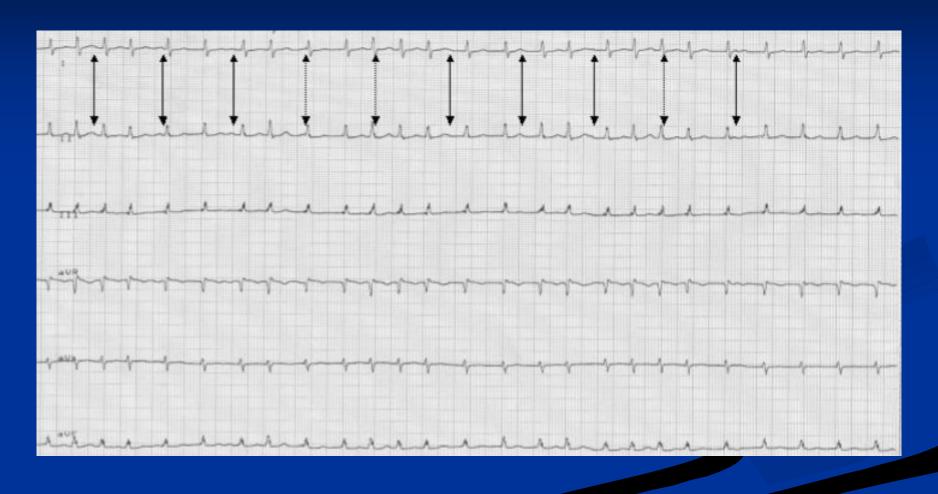
- **Ectopic Tachycardia:**
- **1.** Atrial ectopic and chaotic Tachycardia
- **2. JET:**
 - **3** scenarios:
 - Early postoperative complication
 - Congenital
 - Paroxysmal type adolescent/young adult

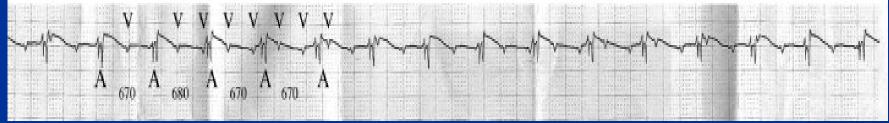
Management of Rhythm and Conduction Disorders SVT- TREATMENT

- **SHOCK:** cardioversion (0.5-1 J/kg)
- Hemodynamically stable:
- **a**) Vagal stimuli
- **b**) Adenosine: 100-200 μg/ kg IV "push"
- **c)** Overdrive: trans-esophageal/atrial epicardial leads
- **d**) MgSO4⁻; rectify all metabolic disorders (K⁺, Ca⁺)
- e) Drugs: sotalol, amiodarone, procainamide, propafenone, digoxin...
- **f**) In the long terme: ablation

Junctional Ectopic Tachycardia

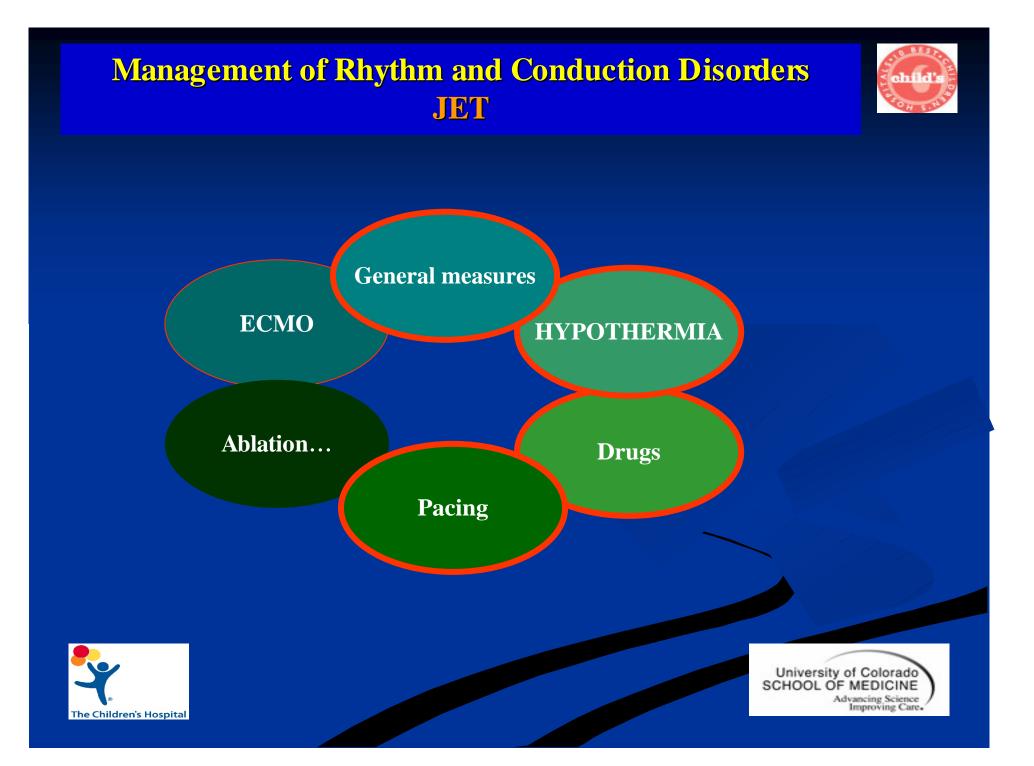



- **Transient, potentially letal arrhythmia**
- **EKG criteria:**
- **1**) Narrow QRS complexes
- **2) HR between 170-260 b.p.m.**
- **a** 3) A-V disociation periods with $HR_v > HR_a$
- AEKG is crucial to establish diagnosis
- Adenosine trial:
 - No response
 - Blocks the retrograde AV conduction
 - Does not modify ventricular rate
- **Resistant to overdrive pacing and to cardioversion**



320 316 316 308 312 318

Objectives:


- **1**) Conversion to sinus rhythm
- 2) Decrease of the ventricular rate
- **3**) A-V synchrony

Markers of «success»:

- 1) Stable ventricular rate <140 -150 b.p.m.
- 2) Ability to establish an adequate A-V synchrony
- 3) Hemodynamic status improvement

University of Colorado SCHOOL OF MEDICINE Advancing Science Improving Care.

General measures:

1) Control of the «stress-response»:

- Sedation
- Optimization of the analgesia

2) Control of exogenous amines:

Decrease inotropic drugs, vagolytic drugs, inodilators to the minimal efficient doses

3) Optimization of the metabolic and acid-basic status

4) Muscular relaxants

Controlled hypothermia/ cooling:

Objectives:

- (- Hoffman TM, et al. Ann Thorac Surg 2002; 74: 1607-1611
- Deakin CD, et al. Anaesthesia 1998; 53: 848-853
- Bash SE, et al. J AM Coll Cardiol 1987; 10: 1095-1099
- Guccione P, et al. G Ital Cardiol 1990; 20: 415-418)
- Decrease cardiac automaticity
- Decrease cardiac rate
- Also useful in the context of concomitant LCOS

Inconvenients:

- Vasoconstriction and metabolic acidosis
- Increased morbidity-sepsis
- Increased lenght of stay in the ICU

Management of Rhythm and Conduction Disorders JET 30 Heart rate Rectal temp. **Cooling start Cooling end** TDK 2 PDK KT LACRISYN

Drugs:

1) Magnesium: conflicting data in literature

Hypomagnesemia is a consequence of surgery involving C.P.B.P.

(- Munoz R, et al. J Thorac Cardiovasc Surg 2000; 119: 891-898
- Hoshino K, et al. Pediatr Int 2003; 45: 39-44
- Satur CM, et al. Ann Thorac Surg 1995; 59: 921-927)

■ Maintenance of normal/supra-normal Mg⁺ levels is a favorable factor...

- (- Dittrich S, et al. Int Care Med 2003; 29: 1141-1144
- Fow ML, et al. Anesth Analg 1997; 84: 497-500
- Wilkes NJ, et al. Anesth Analg 2002; 95: 828-834)

Systematic prophylactic or therapeutic IV MgSO4⁻

- (- Dormann BH, et al. Am Heart J 2000; 139: 522-528
- Dittrich S, et al. Int Care Med 2003; 29: 1141-1144)

Drugs:

2) Amiodarone:

Drug of choice

- (- McKee MR, Curr Opin Pediatr 2003; 15: 193-199
- Dormann BH, et al. Am Heart J 2000; 139: 522-528
- Luedtke SA, et al. Ann Pharmacother 1997; 31: 1347-1359
- Shah MJ, et al. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 1998; 1: 91-102)

Efficient at the dose of 5 mg/ kg IV over 60' or 25 μg/kg/min IV over 4h, followed by 10-20 mg/kg/d or 5-15 μg/kg/min

(- Laird WP, et al. Pediatr Cardiol 2003; 24: 133-137

- McKee MR, Curr Opin Pediatr 2003; 15: 193-199
- Rossi AF, In: Chang AC, Burke RP (eds). The Second International Symposium on Pediatric Cardiac Intensive Care, Miami, Fla, 1997; pp 67-70)

Few significant published side-effects

(- Perry JC, et al. J Am Coll Cardiol 1996; 27: 1246-1250

- Yap SC, et al. Int J Cardiol 2000; 76: 245-247
- Gandy J, et al. Can J Cardiol 1998; 14:855-858
- Raja P, et al. Br Heart J 1994; 72: 261-265)

Drugs:

3) Digoxin:

 Multiple studies show little or no effect in decreasing the ventricular rate in case of JET

(- Dormann BH, et al. Am Heart J 2000; 139: 522-528

- Luedtke SA, et al. Ann Pharmacother 1997; 31: 1347-1359

- Walsh EP, et al. J Am Coll Cardiol 1997; 29: 1046-1053)

No evidence-based data demonstrating benefits of digoxin on both the ventricular rate and the lenght of the JET

Digoxin may increase cardiac automaticity

(- Karapawich PP, Am Heart J 1985; 109: 159-160)

Drugs:

4) Propafenone:

Scarce literature about this drug but favorable data supporting its beneficial effect in decreasing cardiac automaticity

(- Cabrera A, et al. An Esp Pediatr 2002; 56: 505-509

- Garson A, et al. Am J Cardiol 1987; 59: 1422-1444

- Heusch A, et al. Eur Heart J 1994; 15: 1050-1056

- Janousek J, et al. Am J Cardiol 1998; 81: 1121-1124

- Sarubbi B, et al. Heart 2002; 88: 188-190)

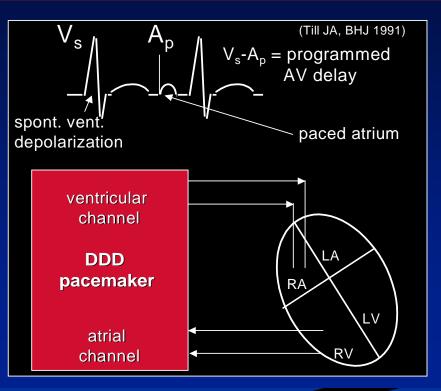
Dose: 300-500 mg/m²/ day po, or 10-20 μg/kg/min IV

Pacing:

Main objective : re-establish AV synchrony

■ 1) Atrial pacing (AOO) 5-10 b.p.m. > ventricular rate

- 2) A-V sequential pacing (DDD)
- **3)** R wave synchronized atrial pacing


(Janousek J, et al. Pacing Clin Electrophysiol 2003; 26: 579-586)

R wave synchronized atrial (AVT) pacing



R wave synchronized atrial pacing

(JET slowed by cooling, 2ndº AV block during AAI pacing)

R wave synchronized atrial pacing (VA int. = 260 ms)

Spont. rhythm (JET)

E.C.M.O.:

Multiple publications describing the vertues of ECMO in case of refractory JET

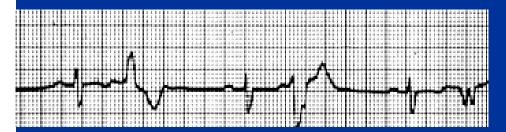
(- Walker GM, et al. Pediatr Crit Care Med 2003; 4: 52-54

- Cohen ML, et al. J Thorac Cardiovasc Surg 1999; 118: 961-963

- Azzam FJ, et al. Can J anesth 1998; 45: 898-902)

Ventricular Tachycardia

- **5%** of postoperative arrhythmias
- More frequent in the adolescent and young adult (Fallot's tetralogy, cardiomyopathy, aortic stenosis...)
- **Young child: long QT syndrome, cardiac tumors**
- POSTOPERATIVE COURSE: high suspicion of ischemia or significant residual lesions
- **Types:**
 - Monomorphic VT
 - Torsades de pointe



Ventricular ectopy:

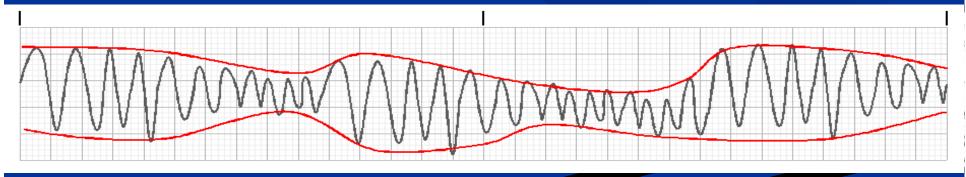
- Usually transient and caused by electrolyte and oxygenation abnormalities

- Does not require anti-arrhythmic drugs
- Rectify all documented metabolic disorders
- Beta-blockers useful in some cases

1. Monomorphic VT :

- Large QRS complexes, regular rate and morphology
- Differential diagnosis with SVT and right bundle-brunch block: adenosine

2. Torsade de pointe:


- Large QRS complexes with variable morphology, "turns around" the iso-electric ligne
- Related to long QT syndrome, cranial traumatism, intoxication by anti-arrhythmic drugs
- Triggered by hypoK⁺, hypoMg⁺, hypoCa⁺

Management of Rhythm and Conduction Disorders
Dentricular tachycardia Monomorphic Ventricular Tachycardia

Polimorphic Ventricular Tachycardia

MONOMORPHIC VT:

- **HEMODYNAMIC COMPROMISING:**
 - Cardioversion $1 \rightarrow 2 \rightarrow 4 \text{ J/kg}$
 - **IV** Amiodarone
 - **■** Alternatives: lidocaïne, procainamide, β-blockers, bretylium
 - Rectify all metabolic and acid-base disorders and any anatomic substract leading to ischemia

MONOMORPHIC VT:

HEMODYNAMIC STABILITY:

- **Burst overdrive pacing:**
 - On the temporary ventricular epicardial pacing leads
 - 10% faster than the tachycardia rate for 1-3 seconds
 - **Defibrillator ready...**
- IV Amiodarone

TORSADE DE POINTE:

SUSTAINED:

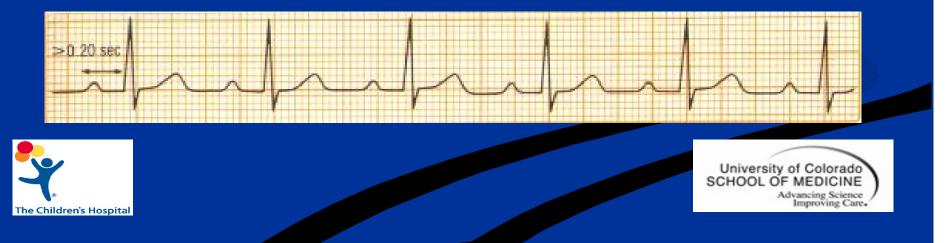
- Cardioversion $1 \rightarrow 2 \rightarrow 4 \text{ J/ kg}$
- MgSO4⁻: 25-50 mg/kg slow IV


TORSADE DE POINTE:

NON-SUSTAINED:

- MgSO4⁻: 25-50 mg/kg slow IV
- LQTS : β-blockers
- Anti-arrhythmic intoxication : isoproterenol, pacemaker

Conductive disorders



Management of Rhythm and Conduction Disorders Conductive disorders

■ 1st degree A-V Block :

- Pre-operative: rheumatic fever, digoxin, cardiomyopathy, ASD, TAPVR, tricuspid atresia, Ebstein's disease, I-TGA, anti-arrhythmic drugs
- Post-operative: complex atrial surgery, inlet VSD
- **No treatment required**

Management of Rhythm and Conduction Disorders Conductive disorders

■ 2nd degree A-V Block:

1. Wenckebach/ Mobitz type I:

- Progressive prolongation of the PR segment
- Tricuspid valve surgery, ASD closure, myocarditis, Duchenne, drugs, tumors, sickle cell disease
- Treatment is required if poor tolerance: treat the underlying cause, isoprenaline, pacemaker

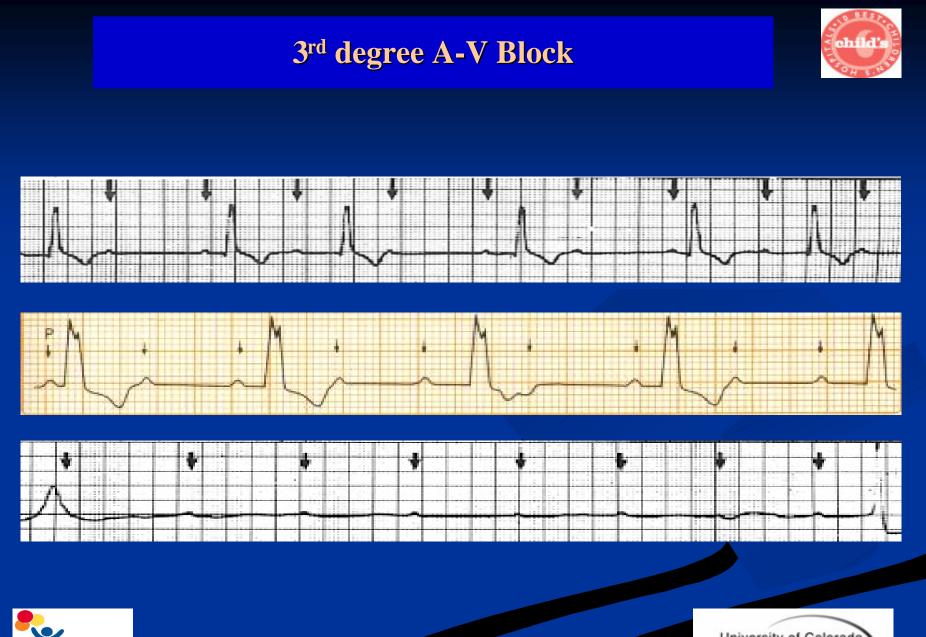
2. Mobitz type II:

- "tout ou rien" AV conduction
- May evolve towards 3rd degree A-V Block
- Treatment: prophylactic pacemaker?

3. BAV II 2:1/3:1/4:1

Mobitz II 2nd degree A-V Block

Management of Rhythm and Conduction Disorders Conductive disorders


- 3rd degree A-V Block:
- **Congenital: I-TGA, maternal collagen disease, heterotaxy**
- Post-operative (2%): VSD, I-TGA, sub-aortic obstruction, Konno, Rastelli, AVSD, Fallot's tetralogy
- Post-operative: transient in 63% of cases; normal sinus rhythm within 10 days

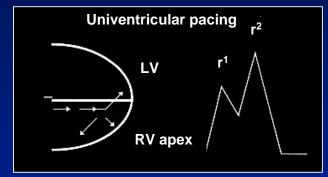
(Weindling SN, et al.Am J Cardiol 1998; 15: 525-527)

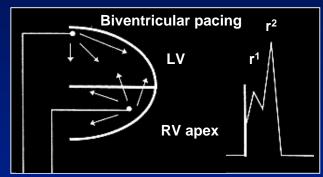
Treatment: pacemaker; isoprenaline



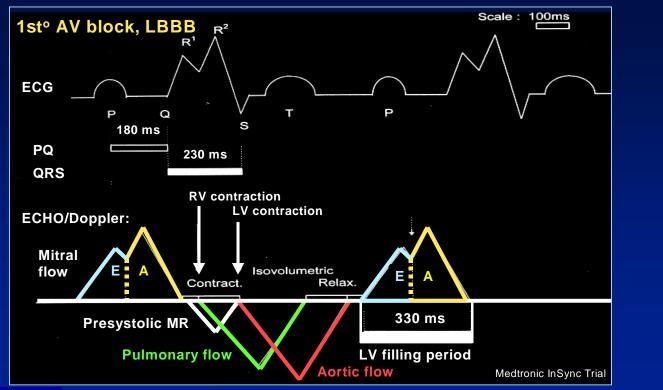
Management of Rhythm and Conduction Disorders Indications for definitive Pacemaker insertion

- Persistent, symptomatic Mobitz type II 2nd degree or 3rd degree A-V block (>7 days)
- **Transient post operative block reverting to normal sinus rhythm with bifascicular block, or Mobitz type II 2nd degree A-V Block**
- **Symptomatic sinus bradycardia**
- Bradycardia-Tachycardia Syndrome
- Symptomatic LQTS
- **Cardiomyopathies (re-synchronization)**

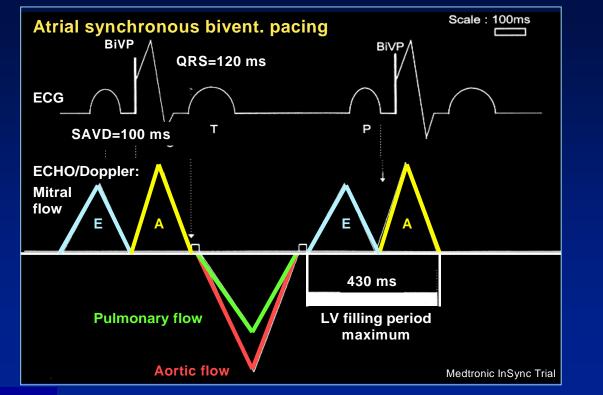


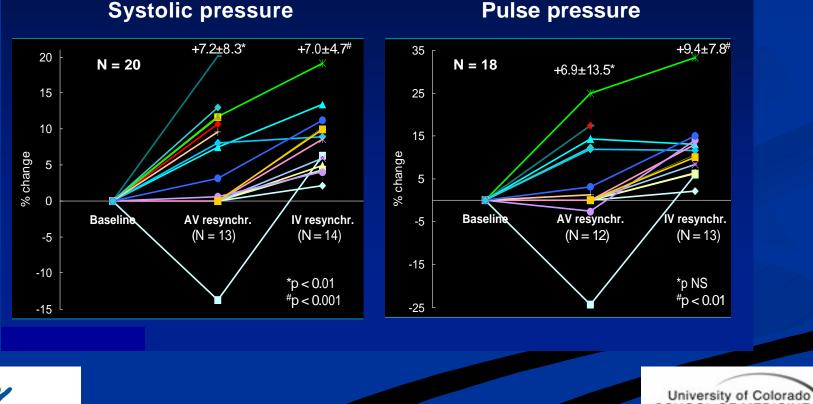

(modified from ACC/AHA/NASPE Guidelines 2002)

EP concept of multisite ventricular pacing



improves ventricular contraction
allows for optimal AV synchrony for both ventricles


Hemodynamic concept of AV and IV dyssynchronization


Hemodynamic concept of AV and IV resynchronization

Arterial pressure changes following AV and IV resynchronization

The Children's Hospital

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.