Respiratory problems with severe malaria:

an opportunity to talk about fluid trials!!!

Kathryn Maitland

Severe malaria-the numbers

• Up to 1 million deaths in African children <5y

• In-hospital mortality unchanged ~ 20-30%

- Progress towards improving case management hampered by
 - inadequate clinical definition
 - treatment guidelines (WHO) –principally informed by adult studies

Severe malaria in African Children different from SE Asian adults

- Fulminant disease course
 >75% deaths < 24hr
- Jaundice, renal failure and lung damage are rare
- Brain swelling potential complication of coma
- Respiratory distress -key feature
- Many features in common with severe sepsis/ sepsis syndrome

Marsh *et al*, 1996, Newton *et al* 1997, English *at al*, 1996 & 1998 Maitland *et al* 2003

Severe malaria: central role of acidosis

Marsh et al, 1995; English et al, 1997

Association of respiratory distress, acidosis and fatal outcome

English et al., 1996

Severe malaria in African children

- More complex than previously recognised
- Many features in common with the sepsis syndrome
- Acidosis/ respiratory distress: best predictor of a fatal outcome
- Therapies aimed at treatment of acidosis may improve outcome

Common approaches to resuscitation: saves lives

- Kinetics of the innate immune: similar range of responses to a range of pathogens
- Common and complex derangements of host physiology
- Most complications reversible by simple approaches
- Treatment of critically ill children based on bedside assessments & without primary diagnosis
- Development of separate paediatric protocols: reduced mortality in sepsis from >60% to <10%

Acidosis: in critically ill children

- Commonest cause of metabolic acidosis in sick children is hypovolaemia
- Limited intravascular reserve of children: shock common response to acute infection
- Hypotension –pre-terminal manifestation; diagnosis overlooked
- Standard management –volume resuscitation

Hypovolaemia is not synonymous with dehydration

Current WHO recommendations (2006)

- Volume resuscitation = controversial and thus discouraged
- Should be given with CVP monitoring (CVP 0-5cm $H_2O!!$)
- Dehydration should be corrected infusion tied to quinine administration (4 hours)

Consequences

- No agreed 'standard of care'
- Some hospital continue to give frusemide to children with respiratory distress ('heart failure')

Aims of Kilifi programme

- 1) To determine whether hypovolaemia aetiologically important in the pathogenesis of severe malaria
- 2) Through clinical trials assess the safety and efficacy of volume resuscitation
- To determine with is the optimum fluid for correction of volume depletion: is this more safely achieved with colloids (albumin) than crystalloids (saline).

Retrospective review admission features of children with severe malaria

Triage	Clinical feature present (%)		Fatality
Airway &	O ₂ Saturation <90%	(17%)	30%
Breathing	Tachypnoea >60	(17%)	30%
	Deep breathing	(20%)	31%
Circulation	Extreme Tachycardia >180 (16%)		17%
	Hypotension	(13%)	26%
	Capillary refill >2s	(32%)	15%
Disability	Impaired consciousness	(78%)	13%
	Lab features:		
	Acidaemia pH <7.2	(22%)	36%
	Elevated creatinine >80	(19%)	26%
	Potassium >5.5 mmols	(10%)	28%
	Hypoglycaemia	(12%)	28%

Maitland et al, QJM 2003

KEMRI Wellcome Trust/Imperial College

- Transfer of intensive care technology
- Children with severe malaria & acidosis
 - Standard methodology to assess volume status
 - Haemodynamic response
 - Continuous haemodynamic monitoring over following 48 hours

Two studies:

- Phase I trial: dose finding studies
- Phase II trial : volume expansion saline or albumin

Physiological studies: hypovolaemia

Hour

Maitland et al (2005)

Safety of volume expansion

Results

53 children received volume expansion: 4 deaths (8%) No complications of pulmonary oedema/brain swelling

Trial recruitment

No control arm: Pilot data: 40% hypotension at admission

Ethical to waiver consent

A priori mortality lower:
•ethical to include control arm (standard of care)
•Provision for rescue therapy

1⁰ endpoint: resolution of acidosis by 8 hours

2⁰ endpoint: in-hospital mortality

Severe Acidosis

Moderate Acidosis

Albumin 2/56 (3.6%) vs Saline 11/61 (16%) P = 0.01

15% rescued

Phase II trial Albumin as a targeted therapy- coma vs non-coma

Maitland et al (2005)

External relevance :global context

Report	Year	Mortality	Clinical Sub-group
Observational- Blantyre	1993	28%	coma & acidaemia
Observational- Kilifi	1996/	24%	deep breathing
	1997	28%	coma
		41%	*coma/deep breathing
Observational- Kumasi	2003	19%	deep breathing
		37%	*coma/deep breathing
Observational Banjul	2003	24%	deep breathing
		40%	*coma/ deep breathing
Randomised triał Kilifi	2004	<mark>4% (2/56)</mark>	albumin arm
		18% (11/61)	saline arm
Coma subgroup		<mark>5% (1/25)</mark>	albumin arm-coma
		46% (11/24)	saline arm -coma

Albumin – relevant for Africa?

- Early evidence of improved outcome with albumin
- HAS expensive and not routinely available
- Cost effective: USD 30-40 per life saved ~ same as the cost of a blood transfusion
- Oncotic effects or due to its other beneficial properties
- Could this be achieved with a cheaper synthetic colloid?
- Aim of Phase II trial : inform the design of the next phase, and NOT to establish statistical superiority of either colloid.

Phase II: Gelofusine Vs albumin RCT

Outcome n/N	Sub-Category	Albumin	Gelofusine	Р
Primary				
1° Resolution of shock (%)	0 h	35/42 (83)	37/43 (86)	0.77
	1 h	12/41 (29)	7/37 (19)	0.29
	8 h	9/41 (20)	5/37 (14)	0.24
Secondary				
In-hospital death, (%)	By ITT	(1/43 (2.3)	7/44 (16)	0.06
	PP	`` <u>1/40 (</u> 2.5)	4/40 (10)	0.36
Neurological sequelae (%)	By ITT	3/43 (7.0)	173 7 (2.7)	0.61
	PP	3/39 (7.7)	1/36 (2.8)	0.62
Adverse events, (%)	Pulmonary oedema	0	0	
	Raised intracranial	0	2/44 (5)	
	pressure			
	Possible allergic	0	1/44 (2.3)	
	reaction			

No difference in mean volumes received

Akech et al, 2006

Summary of trials

	Outcome	n
Pilot Studies	Established hypovolaemia 40% severe acidosis - hypotension	60
RCT	Resolution of acidosis and shock Albumin (4%) mortality lower than saline (18%)	150
Colloid trial	Resolution of acidosis and shock Albumin (2%) mortality less than Gelofusine (18%)	88

Total

298

Summary estimate of the effect of albumin on mortality

Akech et al, 2006

Considerations for Phase III

- Consistently low mortality with human albumin solution: should be included despite cost
- Gelofusine no better than saline
- Current standard of care: (no resuscitation fluids) included as a control
- Definitive address whether volume expansion should be used in general management
- Should lead to general improvement in management of other childhood illnesses where benefit of volume expansion is beyond doubt

If confirmed in larger trial.....

- Management of the sick child: protocol implemented by bedside assessments
- Rationale for generic approach to management
- Dispel common misconceptions
- Demonstration that improved outcome can come through effective delivery of emergency care

wellcome^{trust}

Kilifi:	Imperial College	Oxford	
Charles Newton	Simon Nadel	Tim Peto	
Allan Pamba	Mike Levin		
Samuel Akech			
Richard Idro			
Mike English	Funding		
Kevin Marsh	Wellcome Trust		
Norbert Peshu	COSMIC (salary sup	port for Kath M)	
Nursing staff and support staff			
**Parents: consent for clinical photography			

Kenya Medical Research Institute/Wellcome Trust Supported Collaborative Programme