







Grenoble





### Oxygen and stress or sepsis

#### **Xavier Leverve**

Bioénergétique Fondamentale et Appliquée Dépt. de Médecine aiguë Spécialisée - Unité de Nutrition

5th WCPCC- Geneva June 2007



## Oxygen atom

#### **Electrons**







## Mitochondries Production du gradient de H<sup>+</sup>



# Mitochondries Production •O<sub>2</sub>-



## Oxygen and life span



#### **Flies**

A = 100% Oxygene (continuous)

B = 100% Oxygène (3 days and air)

C = Air

### Oxygen toxicity



Vit E
Tocopherol

Vit C

Glutathion





#### Wild type SOD



Fig. 1. Model of the hypoxia-sensing and signaling pathway based on the neutrophil macrophage NAD(P)H oxidase. It is likely that oxygen is sensed by a heme protein. Cobalt may simulate deoxy-heme by substituting for iron in the protoporphyrin of this heme protein. A flavin group (FL) is likely to participate in the transfer of electrons that enables oxygen to be reduced to superoxide (\*O2-)via the oxidation of NADPH to NADP. In neutrophil/macrophage activation, cytosolic proteins p47, p67 and Rac participate in a macromolecular assembly. However, there is no evidence that these molecules or gp91 or p22 participate in the oxygen-sensing and signal transduction pathway. The formation of reactive oxygen intermediates (ROI) from peroxide is catalysed by iron in the iron-dependent Fenton reaction. It is likely that these oxidizing equivalents mediate the degradation of HIF-10x subunits in the proteosome, thereby preventing the formation of the activated HIF-1 heterodimer that is required for the induction of hypoxia-responsive gene expression.











#### Lactate and brain recovery from ischemia-reperfusion injury



- Slices with lactate showed a significantly higher degree of recovery
- Slices with anaerobic lactate production by pre-hypoxia glucose exhibited functional recovery
- 80% recovery even glucose utilization was blocked during the later part of the hypoxic period and reoxygenation
- Slices in which anaerobic lactate production was blocked during the initial stage of hypoxic did not recover Schurr et al, Brain Res., 1997, 744, 105-11



#### **Normal condition**



Reaction during hypoxia



Reaction after oxygen restoration post hypoxia

Figure 5





#### Beneficial effect of oxygen?

|                                     | Before HBO   | After HBO  |   |
|-------------------------------------|--------------|------------|---|
| fMLP-induced<br>Chemotaxis          | $12 \pm 6$   | 3 ± 4 #    | 7 |
| Bacteria-induced<br>Phagocytosis    | $325 \pm 99$ | 539 ± 57 # |   |
| Bacteria-induced<br>Oxidative burst | 229 ± 27     | 431 ± 92 # | ) |
| NO <sub>3</sub> -                   | 22 ± 6       | 17 ± 5     |   |

Labrouche et al, Thromb Res 1999;96:309

