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Mitochondrial Respiratory Chain
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Fig. 1. Model of the hypoxia-sensing and
signaling pathway based on the neutrophil
macrophage NAD(P)H oxidase. It is likely that
oxyeen 15 sensed by a heme protein. Cobalt may
simulate deoxy-heme by substituting for iron in
the protoporphyrin of this heme protein. A flavin
oroup (FL) is likely to participate in the transfer of
electrons that enables oxyegen to be reduced to
superoxide (*O2 pvia the oxidation of NADPH to
NADP. In  neutrophil/macrophage activation,
cvtosolic proteins p47. p6o7 and Rac participate in
a macromolecular assembly. However, there 1s no
evidence that these molecules or gp9l or p22
participate in the oxygen-sensing and signal
transduction pathway. The formation of reactive
oxvegen intermediates (RO from peroxide is
catalysed by iron in the iron-dependent Fenton
reaction. It is likely that these oxidizing
equivalents mediate the degradation of HIF-lo
subunits in the proteosome, thereby preventing the
formation of the activated HIF-1 heterodimer that
is required for the induction of hypoxia-responsive
CENe eXpPression.
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basal lactate : 3.1 mM

clearance : 384 ml/kg/h
endogenous production: 19{umol/kg/min

basal lactate : 0.8 mM

LACTATE clearan®e 1,777ml/kg/h

INFUSION Endogenoug production: 23.4
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Lactate and brain recovery from 1schemia-reperfusion injury
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Slices with lactate showed a significantly higher degree of recovery

Slices with anaerobic lactate production by pre-hypoxia glucose exhibited functional
recovery

80% recovery even glucose utilization was blocked during the later part of the hypoxic
period and reoxygenation

Slices in which anaerobic lactate production was blocked during the initial stage of
hypoxic did not recover Schurr et al, Brain Res., 1997, 744, 105 -11
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Cardiac index (A), L.m™2
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Y =-0.063 + X.0.138; R? = 0.206, p<0.001
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Beneficial effect of oxygen ?

Before HBO After HBO
fMLP-induced 12+ 6 3+4# — |
Chemotaxis P

Bacteria-induced 325 + 99 / 539 + 57 #

Phagocytosis /
Bacteria-induced 229 + 27 \ 431 + 92 #
Oxidative burst

NOy 22+6 175

Labrouche et al, Thromb Res 1999,;96:309 50

Infection Rate, %

n=7 n=4 n=2 n=2
40-49 50-59 60-69 70-79 80-89 90-99 100-109 110-119 120-129
Psq0, max, mm Hg

Hopf HW et al.; Arch Surg 1997; 132: 997



