Cells and Maturation of the Lung

CHIR Group in Lung Development Hospital for Sick Children, Toronto

5th World Congress on Pediatric Critical Care, Geneva

Congenital malformations

Congenital Diaphragmetic Hernia

Congenital Diaphragmatic Hernia

Lung Characteristics

- •Hypoplasia
- •Reduced airway branching
- Diminished vascularization
- •Reduced alveolar number

Prematurity

- 5-10% of all births
- 75% of neonatal deaths
- 85% of all neonatal complications

Consequence: Bronchopulmonary Dysplasia

Lung Characteristics

Alveoli with emphysema

Microscopic view of normal alveoli

Born: 26 wk; Biopsy: 7 mth

Requirements of Lung Development

Endodermal Lung Specification

Tracheal Outgrowth and Bronchial Bud Formation

Transcription Factors Nkx2.1(TTF-1) Hoxa5 **Growth Factors** FGF10/FGFR2-IIIb

Pulmonary Branching

(Conducting airways)

Question: What guides branching morphogenesis?

MESENCHYMAL-EPITHELIAL INTERACTIONS

Bud branching simplified

FOXA transcription factors regulate SHH required for branching morphogenesis and smooth muscle cell differentiation

Pulmonary Vascular System

How does vascular system develop?

Development of the pulmonary vessels

From the aortic sac a vessel plexus arises around the lung anlagen that with the lung buds extends caudally (32 days)

Vascular development of the lung

 Angiogenesis: the branching of new vessels from preexisting ones → central

 Vasculogenesis: the development of blood lakes that transform into vessels → peripheral

Lung vascular morphogenesis models

Vascularization: In Utero Environment

Intervillous space opens around 10-12 wks gestation

 pO_2 :15-20 mM Hg<10-12 wks > pO_2 :55 mm Hg

Ductus arteriosus shunts 90% of blood from the fetal lung

Consequence: Fetal lung develops in relative Low Oxygen environment

Low Oxygen Tension Promotes Vascular Development

(D11 lung explants of Tie-LacZ mice)

Oxygen concentration

Oxygen-sensing via HIF-1 α protein

(Semenza: PNAS, 99:11570-11572, 2002)

Stabilization of HIF-1 with DMOG Stimulates Vessel formation

EFFECT OF INHIBITION OF VEGF SIGNALING ON EARLY LUNG DEVELOPMENT

Control

VEGFR2 inhibitor SU5416

Treatment of newborn rats with a VEGF receptor inhibitor (barium angiograms)

Alveolar Morphogenesis

- 3. Type II cell
- 4. Basal lamina of airsac
- 5. Basal lamina of vessel
- 6. Endothelium of the vessel

Alveolarization

Processes involved

1.Cell growth2.Septation3.Microvascularization4.Apoptosis

Alveolar septal formation (simplified)

III. Microvascularization with fusion of capillary layer in single medial layer and thinning of interstitium

Alveolarization

Processes involved

1.Cell growth
2.Septation
3.Microvascularization
4.Apoptosis

Epithelial Overexpression of Oxygen Insensitive HIF-1 α

Does overexpression postnatally affect VEGF expression, vessel formation and alveolar formation?

Post nat al Lung hist ology of C57 wild-type pups and HI F-1a \triangle ODD transgenic pups

Postnatal days

Over expression of HIF-1α ΔODD I ncreases Post nat al Peripher al Vessel Number

Over expression of HIF-1a \triangle ODD I ncreases Post nat al Sept al Formation and Alveolar Number

Improved lung growth and function through hypoxiainducible factor in primate chronic lung disease of prematurity

Tiina M. Asikainen, Ling-Yi Chang, Jacqueline J. Coalson, Barbara K. Schneider, Nahid S. Waleh, Machiko Ikegami, John M. Shannon, Vicki T. Winter, Peter Grubb, Ronald I. Clyman, Bradley A. Yoder, James D. Crapo, and Carl W. White

Bronchopulmonary dysplasia (BPD), a chronic lung disease affecting preterm neonates, is associated with significant childhood and adult health problems. Histopathologic features of BPD include impaired vascular and distal airway development. We previously showed that activation of hypoxia-inducible factors (HIFs) by inhibition of prolyl hydroxylase domain-containing proteins (PHDs) is feasible and that it stimulates vascular endothelial growth factor (VEGF) -dependent angiogenesis in vitro. We tested the hypothesis that enhancement of angiogenesis by activation of HIFs improves lung growth and function in prematurely born neonates in vivo. Preterm baboons (125 day+14 day pro re nata O2 model, corresponding to 27 human gestational weeks) were treated for 14 days with intravenous (i.v.) FG-4095, a PHD inhibitor. Notably, 77% of diminished total alveolar surface area in untreated controls was recovered by FG-4095 treatment. Functional significance of the structural changes was indicated by improved oxygenation and lung compliance in FG-4095-treated newborns. Surfactant proteins B and C and saturated phosphatidylcholine were unchanged. Incidence of spontaneous ductus arteriosus closure was increased, likely contributing to lower ratio of pulmonary to systemic

blood flow in FG-4095 group. These findings indicate that HIF stimulation by PHD inhibition ameliorates pathological and physiological consequences of BPD

Epithelial Differentiation

Question: Which pathway(s) regulate(s) epithelial cell patterning along the anterior-posterior axis in the lung?

Selective expression of transcription factors in the respiratory epithelium

Maeda, Y. et al. Physiol. Rev. 2007

TTF-1, FOXA2, NFATC3, and C/EBP α participate in a network regulating perinatal lung maturation and adaptation to airbreathing at birth

Overall Conclusion

Formation of the lung is dependent on a myriad of interactions of signaling and receiving molecules controlling proliferation and differentiation

Remaining Question: How are the different pathways integrated and coordinated at the cellular and molecular level and can we built a lung in vitro?

SickKids

Contributors

Shinya Tsuchida Minke van Tuyl* Ian Copland* Ross Ridsdale Matthias Roth-Kleiner* Veronica DelRiccio Freek Groenman*

Irene Tseu Jinxia Wang* Lei Cao Zhen Huang* Andre Kroon Takihero Nittsu Daochun Luo Micheal Leadley Martin Rutter*

Lung Tissue Stem Cells in Lung Regeneration

Development of the pulmonary vessels (2)

Also from the dorsal aorta a vessel plexus forms that communicates with the ventral one and thus creates a connection between the ventral aortic sac and the dorsal aorta (36 days).

- 1. First aortic arch
- 2. Second aortic arch
- 3. Third aortic arch
- 4. Fourth aortic arch
- 5. Dorsal aorta
- 6. Lung buds
- 7. Aortic sac
- 8. Pulmonary plexus

Pregnant mice were injected at E9.5 with nitroimidazole hypoxia marker EF5 and analyzed at E10.5. Developing lung structures were visualized by EF5 antibody and red colour is indicative of an hypoxic environment.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.