Acute Renal Failure in Neonatal Intensive Care Unit (NICU)

Mignon McCulloch

Associate Professor

Depts of Paeds Nephrology, Transplant at ion & PICU

Red Cross Children's Hospit al University of Cape Town

Case Study

- 28 week Premature infant 950g
 - St or my ant enat al course premature rupture of membranes & chorioamnionitis
 - Poor Apgars needed ventilation
- Week 1 develops PDA
 - Treated successfully with Indomethacin
- Also develops Sepsis
 - Rx Ampicillin / Gent amicin
- Necrotizing enterocolitis oliguria
 - Bowel perforation theatre
- Shocked, anuria & oedemat ous fluid boluses
- Unable to adequately establish feeding

Incidence of Acute Renal Failure(ARF) in NICU

- ARF in the newborn is a very common problem:
 - 3 8% NI CU admission Agras Pl Renal Failure 2004
 - 6 24% of newborns Andreoli S. Sem in Perinatal 2004
 - Frequently multifactorial in origin
- Acut e Renal Failur e in Pl CU
 - 4.5% Bailey D Ped Critic Care 2007
- Mortality in babies with ARF
 - 25 50% Moghal N Sem in Fet & Neon Meds 2006

NICU

467 consecutive admissions/ 1 year

Lunn AJF et al. Arch Dis Child Fet al Neon ed 2006;91:F388-390

- ARF plasma creat > 100 umol/I @ 48 hrs age
- Tot al 8.8% admissions

```
- 37% <28wks
```

- 8% 28-32wks

- 4% 33-36wks

- 2% Term inf ant s

Causes - mult if act or ial:

- Sepsis 39%

- Perinat al asphyxia 17%

- Hypot ension 10%

- Prophylactic Indomet hacin Vent < 1000g</p>
- Deat h in 24%

Embryology

- Nephrogenesis continues to 34 weeks gest at ion
- I schaemic/ Hypoxic and toxic insults
 - Pot entially interrupts nephrogenesis
 - ARF
 - Also long term complications

ARF Traditional Classification

Haycock GB. Semin Neonat ol 2003 Aug;8(4):325-34

- Failure of Renal Perfusion
 - Pre-renal
- Damage to Renal Parenchyma
 - Intrinsic renal
- Obstruction of Urinary tract
 - Post-renal "obstructive"

ARF according to urine output

- Oligo/ anuria
 - Newborns with pre-renal failure
 - Due to hypoxia/ischaemic insults ATN
 - Cortical necrosis
- Normal urine out put
 - Nephrot oxic insults aminoglycoside and contrast nephropathy

Pre-renal Failure

Decreased renal perfusion in intrinsically normal kidney

- Restoration of normal renal perfusion results in return to normal renal function
- Acut e t ubular necrosis(ATN) implies kidney has suf f er ed int rinsic damage
- Evolution of pre-renal to renal failure is not sudden
 - number of compensatory mechanisms work together

Renal Hypoperfusion

- Afferent arteriole
 - relaxes its vascular tone & decrease vascular resistance
 - maint aining renal blood flow
- I ncreased cat echolamine secretion
- Activation of renin angiot ensin system
- Gener at es Prost aglandins(PG's)
 - Vasodilatory PG's including prost acyclin
 - Mediates vasodilation of renal microvasculature
 - Maint ains renal perfusion

Aspirin or NSAID's

- I nhibit PG's and thus affects compensatory mechanism
 - →precipit at ed renal insufficiency during hypoperfusion
- I ndomet hacin f or PDA's risk of renal insufficiency
 - 56% reduction in urinary flow rate
 - 27% reduction in GFR
 - 66% reduction in free water

Aspirin or NSAID's

- I ndomet hacin vs I bupr of en Thomas RL. Eur op J of Ped 2005;164(3):135-140
- Selective Cox-2 inhibitors no better
- I ncreased risk if:
 - Premature 40% alteration in renal function
 - Infant abn renal function prior
 - Mothers received indomet hacin
 - Chorioamnionitis

Case Study

- 28 week Premature infant 950g
 - Stormy ant enat al course premature rupture of membranes & chorioamnionitis
- Week 1 develops PDA
 - Treated successfully with Indomethacin
- Also develops Sepsis
 - Rx Ampicillin / Gent amicin
- Necrotizing enterocolitis oliguria
 - Bowel perforation theatre
- Shocked, anuria & oedematous
 - fluid boluses
- Unable to adequately establish feeding

Acute Tubular Necrosis(ATN)

- Pre-renal failure evolves if severe enough
 - to cause vasoconstriction & ATN

Urine analysis:

- Unremarkable or
- Low grade proteinuria & granular casts
- Abn tubular function not conserving Na and H2O
- Serum Creatinine rises 0.5-1.0mg/dL/day

Radiology

 Normal size kidneys with loss of corticomedullary differentiation

Radionuleotide renal scan

 Poor f unction & delayed accumulation in renal parenchyma with no excretion of isotope

Prognosis of ATN

- Good
- Unless insult severe enough
 - Vasculature injury + microthrombi formation
 - Subsequent cortical necrosis
- Length of recovery variable
 - Days to weeks
- Diur et ic phase prevent additional injury
- Long term follow-up lat e complications
- Mort alit y & morbidit y worse in ARF in neonat es wit h mult ior gan f ailur e

Andreoli S Curr Opin Peds 2002

Nephrotoxic Acute Renal Failure

- Endogenous agent s
 - haemoglobinuria, myoglobinuria
- Dr ugs
 - Aminoglycosides
 - NSAI D's
 - Intravascular contrast
 - 'Ampho-terrible'

Aminoglycosides

- Non-oliguric acut e renal failure
- Urinanalysis minimal urinary abnormalities
- Toxicity related to
 - Dose & duration
 - Level of renal function prior to drug
- Aetiology lysosomal dysf unction of prox tubule and is reversible
- After discontinuation of drug creatinine may continue to increase for few days
 - Ongoing tubular injury due to high levels
 - Once daily dosing

Vascular Insults

- Renal Artery Thrombosis
- Renal Vein Thrombosis

Vascular Insults Cortical necrosis

- Assoc with hypoxic/ischaemic insults
- Gross/ microscopic haemat uria, oliguria, hpt
- Raised Urea and Creatinine
- Thrombocyt opaenia
- U/S
 - normal(early)
 - then atrophy & decrease in size
- Nuclear Renal Scan
 - decreased/ no perfusion with delayed/ no function
- Partial or no recovery risk of CRF later

Medical management

- Fluid management
- Elect rolyt e st at us
- Acid-base balance
- Nutrition
- Renal Replacement Therapy

Medical management Diuretics - Mannitol

- St imulat es ur ine out put
- Conversion of oliguric to non-oliguric ARF
 - does not alter course of ARF
- Mannit ol 0.5 1g/ kg may
 - Increase intra-tubular urine flow to limit tubular obstruction
 - Limit cell damage by prevention of swelling
 - Act as scavenger of free radicals
- Lack of response
 - Hyperosmolality and precipit at es CCF

Medical management Diuretics - Frusemide

- Also increases urine flow rate to decrease intra-tubular obstruction
- I nhibit s Na/ K/ ATPase
 - I mpact on oxygen consumption in already damaged tubules with low O2 supply
- Problems: high doses in ARF assoc with ot ot oxicity
- Trial of therapy: 1 5 mg/kg/dose
 - Unresponsive to Rx continued high doses unlikely to be beneficial
 - Do Respond continuous infusion effective with less toxicity

Medical management Dopamine

- 'Renal Dose'
- Promot e renal perfusion and improves urine out put by promoting natriuresis
- But ...st udies in adult s does not
 - Decrease need for dialysis
 - I mprove survival Dent on MD Kidney I nt 1996
- Not effective in paeds either ...but neonates?

marquette ECG 200 90 SPO₂ 101 88 **PULSE SEARCH** SPO2 28 ART 1 1058 40 100 **PATE** 138 CVP 2 350 -99 30 CVP 2 0 TP 1 42.0 30.0 T1 38.5 SENSOR T1 ℃ T2°C MORE MENUS DISPLAY ON/OFF NBP ZERO GRAPH GO/STOP SILENCE GO/STOP ALARM TRIM KNOB POWER

Medical management Hypokalaemia

Cochrane Dat abase Syst Rev 2007 Jan 24;(1):CD005257

- Newborns with K>6.5mmol/I in absence of ARF
- Cardiac toxicity tall peaked T's → v/tach & v/fib
- Combination of insulin & glucose preferred over cation resin
 - Borderline improvement of mortality
 - Reduction in incidence of IVH > grade 2
- Albuterol inhalation decreased K+ at 4 & 8hrs
- Other Rx for ↑K+ diuretics, xchange transfusion, PD and Calcium still needs RCT testing

Medical management

- Mild Hyponat raemia very common in ARF
 - Fluid overload with dilutional hyponatraemia
 - Less commonly hyponat raemic dehydration
 Management
 - > 120 meq/I fluid restrict or dialysis
 - <120meq/I correction to level of 125meq/I
- Hypocalcaemia ionised Ca
- Hyper phosphat aemia
- Acid base disorders

Medical management

- Marked cat abolism
- Early Enteral feeding if possible
- Feeds compromised due to fluid balance issues
 - Earlier initiation of dialysis

"It's still hungry . . . and I've been stuffing worms into it all day."

Renal Replacement Therapy (CRRT)

Perit oneal Dialysis(PD)

Haemodialysis intermittently

- Haemof ilt rat ion/ Cont inuous Venoveno haemof ilt rat ion(CVVH)
 - with or without dialysis circuit

RRT Peritoneal Dialysis

YES

- Easy to perform practical & training
- Does not require heparinisation
- Difficult venous access
- Haemodynamically unstable babies

NO

- Slower correction of metabolic parameters
- Pot ential for peritonitis
- Frequent exchanges required in babies
- Recent abdominal surgery

RRT Peritoneal Dialysis

- It alian study: Neonat es requiring RRT
 - Due to oligoanuria / fluid overload
 - 11/12 patients PD as only form of RRT
 - UF = 5 20 ml/hr with up to 200 ml/ 24 hr
 - Creat clearance 2-10ml/min/1.73m2
 - Morelli S et al. Contrib Nephrol **2007**;156:428-33
- USA: New Cat het ers Mult ipur pose drainage cat het er (Cook)
 - Bedside placement
 - Effective dialysis with satisfactory complication free survival

Aur on A, War ady B et al Am J Kid Dis 2007 May;49(5)650-5

RRT PD and Ultrafiltration

- Turkey: Complex Congenit al Cardiac patients
 - Neonates & Infants < 1yr 756 patients
 - All cases received peri-operative ultrafiltration
 - 186 patients(24.6% of total) required PD
 - Combination of modalities
 - Post-op negative fluid balance with improvement of outcome
 - » Alkan T et al. ASAI O J 2006 Nov;52(6):693-7

Haemodialysis for babies

- Technologically 'challenging'
- Trained st af f
- Equipment
 - A machine for haemodialysing very small infants
 - Everdell NL et al. Ped Neph (2005)20:636-646
 - Everdell NL. Med Eng Phys 2007 May;29(4):516-24
 - Priming volumes as low as 6.8ml vs 15-40ml
 - Manual now comput er operat ed

Long term follow-up after ARF

- ARF may result in long term renal dysf unction
- Low birth weight babies at risk

Abit bol CL et al. Ped Nephroll 2003;18:887-893

- Signs of kidney injury
 - Microalbuminuria
 - Hyperfiltration (Schwartz GFR > 150ml/min/1.73m2)
 or Decreased GFR
 - Haematuria
 - Hypertension
- Survival rate 56.8% (initial hospitalisation + those died subsequently)
 - High proportion of ARF deceased 3-5yrs after event

Askenazi DJ, Goldstein SL et al Kidney I nt (2006)69,184-189

Acute Renal Replacement Therapy

in Developing Countries

MI McCulloch, PJ Sinclair, P Gajjar, P Nourse, S Salie, S Singh, S Fisher, A Argent.

Departments of Paediatric
Nephrology & Pl CU
Red Cross Children's Hospital (RXH)

Acute Renal Failure

- I ncreasing incidence in association with multi-organ failure in paediatric I CU's
- 1 200 1 400 admissions per year

- Acut e medical cases

- Cardiac cases

- Burns

- Head injuries

- Other

Mortality 10%

Dialysis 3.5%

600/yr

250/yr

50/yr

50/yr

Causes of Acute Renal Failure

Sepsis	46(22%)
Post - car diac sur ger y	36(17%)
Undiagnosed chronic renal disease	21(10%)
Gast roent erit is	19(9%)
Haemolytic uraemic syndrome	19(9%)
Necrotizing enterocolitis	15(7%)

Causes of Acute Renal Failure

Leukaemia/ Lymphoma	14(6%)
Myocarditis	11(5%)
Rapidly progressive nephritis	10(5%)
Trauma/Burns	8(4%)
Toxin ingestion	7(3%)
Kwashior kor * *	6(3%)

Equipment

Tot al cat het ers used	260
Cook	(62%)
- 5 Fr Neonat al	53
- 8 Fr Paediatric	106
- 11 Fr Adult	4
Kimal "peel away" Per cut aneous	46
Tenckhof f	(18%)
Surgical inserted Tenckhoff	51
	(20%)

Complications related to PD Jan 2000 - Dec 2001

- 68 pat ient s received acut e per it oneal dialysis
- 17 Cat het er relat ed problems(25%)
 - Blockage in 16 all Cooke cat het ers
 - Bowel perforation in 1 case
- Infection seen especially if catheter left in longer than 5 days

Perit Dial Int 2001 Flynn et al (Brophy & Bunchman)

	RXH	Flynn (USA)
Time period	2 yrs	10 yrs
Nos of patients	68	63
Complication Rate	25%	25%
Commonest problem	Cat het er blockage	Cat het er malf unct ion
Survival	61%	51%

Acute Peritoneal Dialysis

January 1999 to January 2004

TOTAL NUMBER OF PATIENTS	212
Male: Female	102:110
Age at dialysis:	
< 3 months	79(38%)
3 months - 1yr	45(21%)
1 - 6 years	38(18%)
6 - 12 years	30(14%)
>12 years	20(9%)

Acute PD Long term outcome

Survival following Acute PD	130(61%)
Chronic PD required following Acute PD	26(12%)
Tot all nos of patients requiring CVVHD (PD not possible)	20(9%)
Survival following CVVHD	11(55%)

Peritoneal Dialysis as a Form of CRRT for Infants in a Developing Country

McCulloch M, Argent A.
Red Cross Children's Hospital
University of Cape Town

Red Cross Children's Hospital Experience Aug 1998 - Feb 1999

- 70 Children < 13 years old dialysed</p>
- 25 of these patients were <5kg</p>
- 15/25 I nf ant s (60%) sur vived
- Age range from 2 138 days
- Male:Female 2:1

Diagnosis of Infants Surviving Dialysis

- I NFECTI VE CAUSES
 - Septicaemia
 - Diarrhoea
 - Fungal sepsis

- SURGI CAL CAUSES
 - Necrotising
 Enterocolitis
 - Cardiac Surgery -TGA's
 - Abdominal Surgery

DRUGS

- 13/15 patients received large doses of Fur osemide e.g. 5mg/kg/dose pre-dialysis
- 10/13 patients were on Dopamine infusions at time of dialysis
- 2 patients received Adrenaline infusions in addition
- 7/14 pat ient s were on an Aminoglycoside ant ibiot ic (amikacin/ gent amicin) pre - dialysis

Weight of Infants surviving Dialysis

Advantages of Acute PD Catheters

No bleeding complications

2/15 cat het ers blocked - day 3 and 4 on dialysis

Replaced 1 cat het er by "re-wiring"

Practicalities of Dialysis

Fluid Volumes:

- Small volumes to avoid raised intra abdominal pressure Fischbach M. Perit Dial Int 1996
- 20 ml/ kg/ cycle
- Adapt ed t o vent ilat or y requirement s

Cycle duration:

- Short dwell times to optimize ultrafiltration
- 45 60 minut edwell cycles
- Continuous dialysis over 24 hours

Manual dialysis

Automated Dialysis Home choice machine

Duration Of Dialysis

Added Benefit of Dialysis

- Fluid overloaded infants "Wet lungs" with difficult ventilation
- Reduce maint enance f luid volumes to minimum e.g. 40 ml/ kg/ day
- Use combination of 1.5% or 4.25% dianeal to maint ain blood glucose
- Use glucose concentration in dianeal to allow severe fluid restriction (not usually tolerated in these small infants)
- → Allows space for feeding/fluids

OUTCOME

- 15/25(60%) I nf ant s sur vived to come of f dialysis
- Nil required long term dialysis
- Subsequently demised not related to dialysis:
 - 1 accident al extubation
 - 1 Cerebral Palsy and developed septicaemia 1 year later
 - 1 Shock & Dehydration due to excessive colost omy losses 3 mont hs lat er

COMPLICATIONS RELATED TO DIALYSIS

- 2 blocked cat het ers 1 case size 5Fr cat het er changed f or a 8Fr cat het er
- No bleeding problems related to cat het er
- No infections related to peritoneal dialysis
- Hyponat raemia relat ed to dialysis not a problem
 - Na ranged from 129-138mmol/I

CONCLUSIONS

- Perit oneal Dialysis is a safe and effective method of continuous renal replacement therapy in infants
- Rapid insertion and safety profile makes it possible for use even in smallest infants
- Glucose cont ent in dianeal allows severe fluid restriction wit hout hypoglycaemia

Conclusion

- Perit oneal Dialysis is a relatively easy procedure for acute dialysis even in small babies.
- It can be life saving for children.
- It is appropriate in the African setting, as it does not depend on expensive technology.
 - Even in adequately resource countries
- Survival rate is comparable to our previous audits and also to continuous haemodialysis used in other paediatric units

Take home message

- Prevention of ARF in Neonates NB
- I dent if y high risk inf ant s
- Beware toxins especially drugs
- Dialysis is possible even in smallest inf ant
 - Perit oneal dialysis still has a role
 - Especially in low resource countries
- Long t er m f ollow-up necessar y
 - Call a friend paeds nephrologist!

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.